

EXAMPLE OF RBI

API Recommended Practice 580/581

EPERC Seminar Rome, April 1st to 3rd of 2019 Ricardo Gonzalez, TOTAL Refining & Chemicals

API 581 APPLICATION EXAMPLES

Background

- Large Refinery in the middle east commissioned in 2013
- Last/best technology in materials and process control applied to project
- Inspection team in place since construction, mostly dealing with QA/QC
- Initial RBI @ Project phase using an internationally recognized RBI software based on API 581
- First maintenance turnaround scheduled for 2018

Examples:

- Unit material review of a Coker Naphtha Hydrotreater Unit (KNHT) using API 571 for damage mechanism and API 581 Annex 2.B for the determination of corrosion rates (no piping included)
- Massive RBI analysis of the Refinery's Train affected by internal corrosion using API 581 V3 (Thinning)

EXAMPLE 1 BACKGROUND

Unit material review and RBI of a Coker Naphtha Hydrofiner

- RBI database existed and fully inputted with design & process data and consequence of failure, while the corrosion rates were determined based on expert-advice
- Original scope asked for 100% vessel opening at first mechanical turnaround to check consistency with design assumptions and identify materials/corrosion issues
- ➤ A baseline inspection using thickness monitoring was scheduled during the first in-service cycle based on inspector judgment to adjust corrosion rates and reassess RBI (near 90K TML's for Train 1)
- Scope was considered excessive by management and an alternative method of scope definition was requested
- Purpose of the exercise was to determine the first in-service inspection date & scope for the unit example's equipment and establish a quick evaluation tool to reassess the scope of vessels inspection

EXAMPLE 1 METHOD

- Identify equipment into the standard damage mechanism diagram of API
 571
- 2. Check **local unit's corrosion concern** areas and corrosion control program against NACE Corrosion control manual
- 3. Identify active and inactive damage mechanism (Thinning & SCC)
- Determine theoretical corrosion rate using API 581 Annex 2.B and the material & process information
- 5. Recalculate the risk using the RBI software and revised data
- 6. Determine **minimum inspection effectiveness** to control the risk for the period **2014 to 2023** (maximizing non-intrusive on-stream)
- Exercise lasts 4 days covering 47 vessels using a team formed with the local RBI leader and deputy, and an external RBI expert

SCC: Stress corrosion cracking

EXAMPLE 1 EXAMPLE OF CORROSION RATE ESTIMATION

- Drum D2, affected by Sour water corrosion (additionally to HIC-SOHIC)
- Use of API 581's Table 2.B.7.1/2 and 7M
- Gas concentration into Water: 0,51 wt%
- Corrosion rate @ max. fluid speed: 0,38 mm/yr.

Equipment	API-571 DM	Inspection required at?	Equipment	API-571 DM	Inspection required at?	
D1	4,6	Not required	Al's (Bundle)	7	CR=0,13, insp. 2018 (Internal, IRIS/EC)	
EIABCD tube side	8	CR=0,13, HIC-SOHIC removed, insp >2028	E4 (shell side)	2,7	CR0,13, insp >2028	
E14 (tube side)	8	CR=0,13, insp >2028	D2	2,7	CR=0,38, HIC-SOHIC (Sens. Low, insp 2024) Finally insp. 2018 (Highly, internal WFMT)	
R1	8	CR=0,13, insp >2028	D4	2,13	CR=0,13, HIC-SOHIC (sens very low) ins >2028	
E2/E3 (tube side)	8	CR=0,13, insp >2028	D6	2	HIC-SOHIC sens. Med insp. 2023 (Fairly, o stream)	
F1 (tubes)	1,3,4	No required	E5	2,13	2048	
	5,23	Prevention (PTA, etc)	C1 top section	2	HIC-SOHIC, send med. insp. 2018 (Highly, internal WFMT)	
R2/R3	1	CR=0,51 Base & 0,03 Clad. 0,3 if clad is gone, insp >2028	A2's	2	HIC-SOHIC sens low insp. 2025 (On- stream)	
	4	CR=0,2 Base & 0,03 Clad. 0,3 if clad is gone, insp >2028	E6	2	HIC-SOHIC sens low insp. 2018 (On- stream)	
	5,23	Prevention (PTA, etc)	D3	2	HIC-SOHIC sens low insp. 2018 (On- stream)	
E1's/E2 (shell side)	1,4	CR=0,03/0,05, insp >2028	C2, A3's, D5, E12/7/8/9/10/1 1, A2's	Clean	Not required	
A1's (Headers)	2,7	HIC-SOHIC (API 932B), insp 2018 (on stream)		à		

EXAMPLE 1 RESULTS

- Summary by equipment type and inspection needs
- Globally, 20% of equipment require inspection during the period 2014-2023 (two unit cycles)

EQP-Type	Net- count	Assessed	Internal insp. TA 2018	On-stream insp. before TA 2018	On-stream insp. Period 2018-2023
Reactor	3	3			
Drum	6	6	1	1	1
Column	2	2	1		
Furnace	1	1			
Exchanger	19	19		1	
Airfin	16	16		4	
Total	47	47	2 (4%)	6 (13%)	2 (4%)

EXAMPLE 2 BACKGROUND

Full RBI analysis of Refinery's Train 2

- > Train 2 of the Refinery includes Distillation, Mild Hydrocracker, Diesel & Naphtha Hydrotreaters, Sulphur Recovery, Amine, Hydrogen, LPG and FCC/Coker (shared with Train 1).
- RBI database was fully inputted with design & process data of 1425 component on vessels and 454 piping circuits
- The corrosion rates were determined based on expert-advice at project Phase
- Purpose of study was to determine the number of equipment needing inspection for internal corrosion during the first two unit cycles 2013-2023

Unit type	Piping	Vessels	
Hydrotreating	106	371	
FCC-Coker	115	352	
Treating	106	241	
Distillation	44	199	
Gas Plant	25	100	
Alkylation	17	90	
Hydrogen	23	50	
LPG	18	22	
Total Items	454	1425	

EXAMPLE 2 NEW THINNING MODEL OF API 581

- Version 3 of document released in 2018 contains a new model for assessing POF related to metal loss.
- In general terms this model includes:
 - Determination of furnished thickness, corrosion rate, effectiveness of past inspection and time in service
 - Determination of minimum required thickness through FFS or code calculation
 - Calculate ar/t factor including clad (if exist)
 - Calculate strength ratio using flow stress and the average of tensile & yield stress of the material
 - Calculate the inspection effectiveness factor and the posterior probability depending on those factors (Bayesian approach)
 - Determine the damage factor using affecting the previous calculated parameters by a standard normal cumulative distribution function
 - Affect the calculated damage factor by the on-line monitoring, dead-legs, etc. as in version 2.

FFS: Fitness-for-service, ar/t: Aging factor (Period.Corrosion rate / Thickness)

EXAMPLE 2 METHOD

 Obtain process and physical data from RBI database including the corrosion rate determined by the expert

2. Recalculate parameters and **probability of failure** of each year in service for 30 years period (Version 3 model)

 No consequence analysis, risk target was set to POF < 3,06^E04 (Level 2 of the Risk Matrix)

4. Identify the **early date** at which the POF of the component overpass 3,06^E04 and set that as the first inservice inspection date

Maximum acceptable POF: 3,06^E04

EXAMPLE 2 RESULTS

- Only 6% of Vessels should receive first in-service inspection before 2023 (the bottom of a HDS stripper must have been inspected following 1 year of operation)
- ➤ Piping should receive more attention with 16% of circuits inspected by 2023 (which 88 during the first Refinery cycle)
- As per piping, most of inspection should be on-stream non-intrusive

First in-service inspection	Piping		Vessels	
≤ 2023	309	16%	115	6%
2024 to 2028	60	3%	296	16%
> 2028	85	5%	1014	54%
Total	454		1425	

EXAMPLE 2 SUMMARY

- Assessment result is in line with industry experience
- A partial independent check of those two assessment by a recognized international RBI expert body confirmed the results

- The validity of this type of assessment is extremely conditioned to the integrity operation management
- Piping, Hydro treating units the main concern for corrosion (also in line with the history)

WHY TURNAROUND INSPECTION SHOULD BE MINIMIZED?

> A required inspection...

	Feasible	Effective	Opportune	Low cost
On-Stream, Non-Intrusive	Highly	Highly	Fully	Low
Intrusive	Poorly	Fully	Fairly	High
Issues	Manhole, NDT	Integrity	Integrity, discovery work	Budget

REFERENCES

- > API 571 Damage Mechanism affecting Refining Industry
- > API 581 Recommended practice version 2008 & 2016

